
Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline

Bence Bécsy1,2, Peter Raffai1,2, Neil J. Cornish3, Reed Essick4, Jonah Kanner5, Erik Katsavounidis4, Tyson B. Littenberg6,
Margaret Millhouse3, and Salvatore Vitale4

1 Institute of Physics, Eötvös University, 1117 Budapest, Hungary; becsybence@caesar.elte.hu
2 MTA-ELTE EIRSA “Lendület” Astrophysics Research Group, 1117 Budapest, Hungary

3 Department of Physics, Montana State University, Bozeman, MT 59717, USA
4 Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139, USA

5 LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
6 NASA Marshall Space Flight Center, Huntsville, AL 35812, USA

Received 2016 December 2; revised 2017 February 27; accepted 2017 February 27; published 2017 April 7

Abstract

We provide a comprehensive multi-aspect study of the performance of a pipeline used by the LIGO-Virgo
Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different
morphologies (sine-Gaussians (SGs), Gaussians, white-noise bursts, and binary black hole signals) to simulated
noise samples representing noise of the two Advanced LIGO detectors during their first observing run. We recover
them with the BayesWave (BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and
estimation of model-independent waveform parameters. BW localizes sources with a level of accuracy comparable
for all four morphologies, with the median separation of actual and estimated sky locations ranging from 25°.1 to
30°.3. This is a reasonable accuracy in the two-detector case, and is comparable to accuracies of other localization
methods studied previously. As BW reconstructs generic transient signals with SG wavelets, it is unsurprising that
BW performs best in reconstructing SG and Gaussian waveforms. The BW accuracy in waveform reconstruction
increases steeply with the network signal-to-noise ratio (S/Nnet), reaching a 85% and 95% match between the
reconstructed and actual waveform below S/N 20net » and S/N 50net » , respectively, for all morphologies. The
BW accuracy in estimating central moments of waveforms is only limited by statistical errors in the frequency
domain, and is also affected by systematic errors in the time domain as BW cannot reconstruct low-amplitude parts
of signals that are overwhelmed by noise. The figures of merit we introduce can be used in future characterizations
of parameter estimation pipelines.
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1. Introduction

The network of Advanced LIGO (aLIGO) gravitational-wave
(GW) detectors (Aasi et al. 2015), consisting of aLIGO-Hanford
(H1) and aLIGO-Livingston (L1), completed its first observing
run (O1) in 2016 January. During O1, this network achieved the
first direct detections of GWs by detecting GW150914 (Abbott
et al. 2016a) and GW151226 (Abbott et al. 2016b), two signals
from coalescences of binary black holes. In addition to binary
black holes, other astrophysical sources of GW transients
(e.g., core-collapse supernovae, magnetar flares, and cosmic string
cusps) are also targeted by aLIGO (Abbott et al. 2016c). Searches
for generic GW transients aim to detect weakly modeled GW
signals (“bursts”) from such systems as well as from binary black
holes, and also from as-yet-unknown sources (see e.g., Abbott
et al. 2016d; Belczynski et al. 2016).

Detections of GW signals will be used to test and constrain
models of astrophysical sources (see e.g., Abbott et al. 2016e).
This usually requires reconstructing the signal waveform from
the GW detector output and estimating parameters of the
waveform (see e.g., Abbott et al. 2016f). For sources for which
an accurate waveform model exists, such as binary black holes
in circular orbits, this is done by matching the detector output
with template waveforms (see e.g., Abbott et al. 2016f). In this
case, the estimated parameters are astrophysical, e.g., chirp
mass and spins. Parameter estimation (PE) for burst signals for
which no model templates exist need a different approach. In
these cases, basis functions are used to reconstruct the

waveform and to estimate model-independent parameters of
it, such as central time and frequency, signal duration, and
bandwidth. In addition to these intrinsic parameters of the
waveform, estimates can also be given on the extrinsic
parameters of the source (e.g., sky location).
BayesWave (BW) is a pipeline for detecting and

characterizing GW bursts that works within the framework of
Bayesian statistics and uses sine-Gaussian (SG) wavelets as
basis functions to reconstruct the signal (Cornish & Littenberg
2015). In O1, BW was used as a follow-up PE tool on triggers
provided by the coherent Waveburst (cWB) search pipeline
(Klimenko et al. 2008, 2016), which identifies coincident
excess power in strain data of multiple GW detectors. We
note, however, that cWB can also reconstruct the sky location
of a GW source and the waveform of the GW signal,
independently of BW (Klimenko et al. 2011). This provides
an opportunity to compare the performances of BW and cWB
in PE using the same set of triggers (for the results of this
comparison, see Section 3.1). BW is effective in distinguishing
GW signals from non-Gaussian noise artifacts (“glitches”),
which enables the combination of the cWB and BW pipelines
to achieve high-confidence detections across a range of
waveform morphologies (Kanner et al. 2016; Littenberg et al.
2016). The estimates of mass parameters and sky location
obtained by BW for GW150914 have been shown to be
consistent with template-based PE pipelines (Abbott
et al. 2016d).
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In this paper we characterize the BW performance in PE by
injecting a large set of simulated signals into simulated aLIGO
noise, and recovering them and their parameters with BW. The
main purpose of this study is to determine the accuracy of the
reconstructions that can be achieved with BW. By knowing the
accuracy, future studies can identify the broadest range of
astrophysical models that can be tested with BW, while further
improvements of BW can be guided by these results. Among
the estimated parameters, we give special attention to sky
location of the GW source, because of its key role in
electromagnetic (EM) follow-up observations of GW events
(see, e.g., Singer et al. 2014; Berry et al. 2015; Abbott et al.
2016g; Vitale et al. 2017). Sky localization of GW burst
sources can also be carried out with the cWB and LALInfer-
enceBurst (LIB) pipelines (Lynch et al. 2015; Veitch
et al. 2015). An extensive analysis of the sky localization
performance of cWB and LIB was published in Essick et al.
(2015). Here we present a similar analysis for BW in order to
characterize its performance and to allow comparisons with
other burst pipelines studied in Essick et al. (2015). We note,
however, that as we use a reduced set of triggers compared to
Essick et al. (2015) (for an explanation, see Appendix A), our
results in Figures 1–4 should not be compared directly with
results in Figures 3–6 of Essick et al. (2015). Instead, to allow
direct comparisons between BW, cWB, and LIB, we repeat our
analysis with cWB and with LIB on the same reduced set of
triggers, and present the results in Figures 1–4 (available in the
online journal). We also note that new cWB sky localization
results for binary black holes presented recently (see Vitale
et al. 2017) show that the cWB performance has improved
significantly for a three-detector network, while it has not
changed significantly for the two-detector case we present here.

We focus on three aspects of the BW performance: (i) sky
localization, (ii) waveform reconstruction, and (iii) estimation
of model-independent waveform parameters. In Section 2 we
describe the methods used for creating simulated signals and
noise samples, and the ones used by BW to carry out PE. In
Section 3 we present the results of our analyses regarding all
(i)–(iii) aspects. We summarize our findings and highlight some
implications in Section 4.

2. Methods

We used software injections to test the PE performance of
BW, i.e.,we created mock samples of aLIGO noise and added
simulated GW signals with four different morphologies to these
samples. We then used these samples at trigger times provided
by cWB as inputs for BW to test what it recovers from the
signals embedded in the mock detector noise. In this section we
discuss the characteristics of the noise samples and of the
simulated signals we used (Section 2.1), as well as the methods
BW uses for PE (Section 2.2).

2.1. Noise and Injections

In this section we summarize the characteristics of the
injections and noise samples we used in our analyses, which are
the same as those used in Essick et al. (2015). For further
details on this, see Section 2, Appendix C, and Table 4 in
Essick et al. (2015).

In our analysis we considered a two-detector network consisting
of H1 and L1. We used stationary Gaussian mock-noise samples
generated using the expected 2015 sensitivity curve of aLIGO,

therefore they have slightly different characteristics than the actual
noise collected during the O1 run. Projections show that the two
LIGO detectors will operate in the first two months of the second
observing run (O2) with sensitivity curves similar to those they
operated with during O1. We therefore expect that our results are
representative for this first period of O2 as well.
Our set of software injections consists of signals with four

different morphologies: SG, Gaussians (G), white-noise bursts
(WNBs), and binary black hole (BBH) mergers. This wide
range of signal morphologies allows us to test the PE
performance of BW with minimal assumptions on the GW
signal. The amplitude distribution of the injected signals was
chosen such as to represent a uniform distribution of GW
sources in volume. Signal injections were distributed uniformly
over the sky and were regularly spaced in time.
The number of signals we analyzed was determined by

multiple factors (see Table 1): (i) the BW version we used runs
only on triggers produced by cWB (Abbott et al. 2016d), (ii)
we reduced the number of BBH triggers in order to reduce
computational costs, and (iii) we only used signals that were
correctly identified as signals by BW. For details on why BW
identified many SG and WNB signals as glitches or Gaussian
noise, and how this has been improved for O2, see
Appendix A.
Sine-Gaussian waveforms are often used to model generic

transients (e.g., Abadie et al. 2012) because they are the most
localized signals in time-frequency space where generic burst
searches (including cWB) operate (see Chatterji 2005). We
define SG waveforms with the following two equations:
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where 0, 2a pÎ [ ] is a parameter that sets the relative weights
between polarizations h+ and h×, h h h dtrss

2 2 2ò= ++ ´( ) is the
square of the root-sum-squared strain amplitude chosen as a
free parameter in the amplitude randomization process, f0 is the
central frequency, t0 is the central time, 0f is the phase at time

Table 1
Number of Injected Signals for Each Morphology at

Different Stages of the Analysis

SG G WNB BBH

Triggers produced by cWB 1112 256 769 2488
Left out to reduce computational costs 0 0 0 −1988

Analyzed by BW 1112 256 769 500
Identified as glitches or Gaussian noise
by BW

−779 0 −355 −1

Used in our analysis 333 256 414 499

Note. For details on why BW identified many SG and WNB signals as glitches
or Gaussian noise, and how this has been improved for O2, see Appendix A.
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t t0= , τ is the width of the signal in the time domain (TD), and
Q f2 0pt= is the quality factor encoding the characteristic
number of cycles within the duration of the signal.

Gaussian signals are special cases of SG signals when
f 00  , and are defined as
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Despite their similarity to SGs, these signals pose different
challenges because they have their highest amplitude at
f=0 Hz in the frequency domain (FD), and thus they have
most of their power at low frequencies where aLIGO is less
sensitive.

White-noise burst waveforms are intended to model a time-
localized excess power that is uniformly distributed in a given
frequency band, and that satisfy
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where w( f ) values are randomly drawn from a Gaussian white
noise within and chosen to be w f 0=( ) outside the band
f f f,min maxÎ [ ]. We generated the right side of Equation (3)
independently for the+ and×polarizations, and normalized them
to derive h+ and h× with the desired hrss. Unlike signals with the
other three morphologies, WNB signals are not elliptically
polarized because the procedure used to produce them generates
h+ and h× independently.

The only astrophysical signals we used were binary black holes
with spins aligned or anti-aligned with the orbital angular
momentum. We only considered binaries with relatively high
detector-frame total masses (M M30, 50tot Î [ ] ) because their
signals are more compact in time-frequency space, which makes
them good targets for generic burst searches. Three different
methods have been used for calculating the waveform in the three
different phases of binary evolution: 3.5PN post-Newtonian
expansion, numerical relativity, and analytic quasi-normal modes
to calculate the inspiral, merger, and ringdown waveforms,
respectively (see Hannam et al. 2010; Ajith et al. 2011 for details).

2.2. The BW Pipeline

BayesWave uses a trans-dimensional reversible-jump Markov
chain Monte Carlo (RJMCMC) algorithm (Green 1995) to explore
the following three competing models of the data and test them
with the input data samples from each aLIGO detector: (i)
Gaussian noise only, (ii) Gaussian noise with glitches, and (iii)
Gaussian noise with a GW signal. This approach makes BW
effective in distinguishing GW signals from glitches (Littenberg
et al. 2016), but it also makes BW computationally expensive, and
thus in O1, BW was used to follow-up candidate events
from cWB.

BayesWave assumes that all signals are elliptically polar-
ized, i.e.,h h ei 2= p

´ + , where 0, 1 Î [ ] is the ellipticity
parameter, which is 0 for linearly polarized signals and 1 for
circularly polarized signals. This is a valid assumption for
many expected astrophysical signals, but not for our injections
with WNB morphology (see Section 2.1). However, for a
LIGO-only network, it is often the case that only a single
combination of the two polarizations, rather than the separate +

and×components, will be detectable, making the elliptical
constraint a fair approximation for many cases.
We used the BW version that had been used for the offline

analysis of O1 data to attain a characterization of the BW
performance during O1 and to support a fair comparison with the
versions of other PE pipelines characterized in Essick et al. (2015).
PE pipelines used by the LIGO-Virgo Collaboration (including
BW) have undergone improvements since the beginning of O1
(some of which were motivated by this study).

3. Results

In this section we show how BW performed in different aspects
of PE. These aspects are sky localization (see Section 3.1),
waveform reconstruction (see Section 3.2), and point estimates of
waveform central moments (see Section 3.3).
Even though the current version of BW (O2) is more

efficient in identifying signals (see Appendix A), we used the
version of BW used during O1 in order to characterize the BW
performance during O1 and to allow a comparison of our
results with those presented in Essick et al. (2015). We only
analyzed signals that were properly identified as signals by BW
(see Table 1). We present a reproduction of results of Essick
et al. (2015) for the subset of events we used in this study to
enable a fair comparison of sky localization results (see
Figures 1–4).
Results presented here depend on the parameter distributions of

injected signals defined in Table 4 of Essick et al. (2015) and on
the corresponding detection efficiencies of the combination of
cWB and BW pipelines for the different parameter sets. Results
are particularly dependent on the chosen hrss distribution
of injected signals, and thus on the network signal-to-noise ratio
(S/Nnet) distribution of them (see inset of Figure 5). However, the
hrss distribution we chose for this study is a good approximation
for generic burst signals that are uniformly distributed in volume
(see Appendix C in Essick et al. 2015).

3.1. Sky Localization

BayesWave computes a skymap defined as the posterior
probability density function of the GW source location expressed
as a function of celestial coordinates α (right ascension) and δ
(declination), denoted by p ,sky a d( ). Example skymaps for each
morphology are shown in Appendix B. Skymaps for all the
injections can be found in the Burst First2Years sky localization
Open Data release.7 There are many possible quantitative
measures for the “goodness” of source localization; here we
implement the measures defined in Essick et al. (2015),
i.e.,angular offset, searched area, extent, and fragmentation.
We reproduced the results of Essick et al. (2015) for LIB and
cWB using the same subset of events as we used in this study
(those identified as signals by BW) to enable a direct comparison
of the results (see Figures 1–4).
The first measure is the angular offset (dq), which is the

angular distance between the maximum of psky and the true
location of the injected signal. Figure 1 shows normalized
histograms of cos dq( ) for all injections, with the upper axis
showing the corresponding dq values. The distribution has a
peak at cos 1dq =( ) , which suggests that BW tends to
reconstruct the most probable location of the source close to
the actual source location. There is also a smaller peak at

7 http://www.ligo.org/scientists/burst-first2years/
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cos 1dq = -( ) , which indicates that it is more likely that BW
reconstructs the opposite direction of the sky compared to the
location of the injected signal than a direction perpendicular to
the injected signal’s location. The reason is that opposite
directions cannot be distinguished using the network antenna
pattern, which has the same value at opposite directions
because of the near co-alignment of H1 and L1 detectors

Figure 1. Normalized histograms of angular offsets (dq) for injections with
four different morphologies (SG, G, WNB, and BBH). Most of the injected
signals have cos 1dq =( ) , which indicates that BW tends to place the most
probable location close to the true location. Note that the distributions for
different morphologies are very similar to each other, which means that the
angular offset does not depend strongly on signal morphology. The complete
figure set (three figures) showing the same plot for cWB and LIB pipelines is
available in the online journal.

(The complete figure set (3 images) is available.)

Figure 2. Cumulative histograms of the searched area (). Histograms for
different morphologies follow a similar trend, except that the curves are shifted
along the horizontal axis. A reference curve labeled with SG (LIB) shows
results for the LIB pipeline on the subset of SG signals identified as signals by
BW. The complete figure set (three figures) showing the same plot for cWB
and LIB pipelines is available in the online journal.

(The complete figure set (3 images) is available.)

Figure 3. Normailzed histograms of the extent ( injdq ) of skymaps for the four
different injection morphologies. The distributions are bimodal for all
morphologies with peaks at cos 1injdq = ( ) . The complete figure set (three
figures) showing the same plot for cWB and LIB pipelines is available in the
online journal.

(The complete figure set (3 images) is available.)

Figure 4. Distributions of fragmentation. Each row corresponds to one of the
four morphologies (SG, G, WNB, and BBH). Numbers at the bottom of the
chart represent the number of disjoint regions in parts of the sky where
p psky 0 . The number of disjoint regions is smaller than 4 for more than 50%
of injected signals for all morphologies. The complete figure set (three figures)
showing the same plot for cWB and LIB pipelines is available in the online
journal.

(The complete figure set (3 images) is available.)
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(Singer et al. 2014). However, the peak at cos 1dq = -( ) is
smaller than the peak at cos 1dq =( ) because opposite
directions are only allowed by the triangulation ring when
the source is right above (or below) the detectors, and thus the
triangulation ring is a great circle on the celestial sphere. We
note that the distributions for different morphologies are very
similar to each other, which means that the angular offset
depends weakly on signal morphology. We show the summary
statistics of dq distributions for all morphologies in Table 2. It
is clearly visible that BW performs best for BBH signals, while
SG, G, and WNB signals show slightly higher dq values.
Statistical errors on reported values are in the order of a few
percent. Figure 1 shows normalized histograms of cos dq( )
obtained with the cWB and LIB pipelines on the subset of
signals identified as signals by BW.

Electromagnetic follow-up observations tend to target the
point of the sky with the highest psky value first, and continue
with points of lower psky values. This motivates the introduc-
tion of the searched area () as a second measure, which is the
total sky area observed before aiming a hypothetical telescope
at the true location of the source:

H p p d, , 4sky 0 ò a d= - W( ( ) ) ( )

where H is the Heaviside step function, p0 is the value of psky at
the true location of the source, and d d dcos d d aW = .

We show the cumulative histogram of  for all injections in
Figure 2. Histograms for different morphologies follow a
similar trend, but the curves are shifted along the horizontal
axis. This can be quantified, e.g.,with median searched
area, which is 252.8 deg2 for G, 151.0 deg2 for WNB, 121.3
deg2 for SG, and 99.2 deg2 for BBH signals. Another
difference between the morphologies is that there is a fraction
of WNB signals with a searched area equal to the whole sky
( 4 10 deg4 2 ´ ). The reason is that p 00 = for these
signals, i.e.,the posterior distribution has no support at the true
location of the source. There are no such signals with SG, G,
and BBH morphologies. A reference curve labeled SG (LIB)
shows results for the LIB pipeline of the subset of SG signals
identified as signals by BW. We note that LIB uses a single SG
to reconstruct the signal, so that for SG injections LIB becomes
a matched-filtering analysis for which better performance is

expected, while BW sometimes uses more than one SG because
it favors more complex signals. This shows that LIB performed
similarly, but slightly better for SG signals. We show the
summary statistics of the  distributions for all morphologies
in Table 2. It is clearly visible that BW performs best for BBH
signals, while SG, G, and WNB signals show significantly
higher  values. Statistical errors on the reported values are in
the order of a few percent. Figure 2 shows normalized
histograms of  obtained with the cWB and LIB pipelines on
the subset of signals identified as signals by BW.
Even if dq and  are small, the favored sky positions can

still be either well localized or spread out over various parts of
the sky. To quantify this feature, we introduce the extent ( injdq )
of a skymap as the maximum angular distance between
the location of the injected signal and any other point
satisfying p p,sky 0a d( ) . We show histograms of injdq in
Figure 3. The distributions are clearly bimodal, with peaks at
cos 1injdq = ( ) . The peak at cos 1injdq =( ) corresponds to
well-localized signals, while the peak at cos 1injdq = -( ) shows
that there is a similarly large number of events with the skymap
extended even to the opposite direction of the sky compared to
the true location of the signal. The reason is the same effect as
described previously when explaining Figure 1. We note that
there are significant differences in the height of the two peaks,
e.g., the histogram for the BBH signals has a peak at
cos 1injdq =( ) that is twice as high as the peak in the histogram
for the G signals. Figure 3 shows histograms of injdq obtained
with the cWB and LIB pipelines on the subset of signals
identified as signals by BW.
Even if previous measures indicate a well-localized source,

the skymap can still be fragmented, which makes it more
difficult to cover the whole with EM observations. We
therefore introduce the fragmentation of a skymap as the
number of disjoint regions in the union of points satisfying
p p,sky 0d a( ) . We show the distribution of the number of
disjoint regions in Figure 4. There are fewer than four disjoint
regions for more than 50% of the injected signals for all
morphologies. Skymaps for SG and WNB signals are
significantly more fragmented than for G and BBH signals.
The reason is that the skymaps of these signals are more likely
to have “fringe peaks.” These are separate rings in the sky
corresponding to local maxima of matches between different

Table 2
Summary Statistics of  and dq Distributions

Morphology BBH SG G WNB

Fraction (in %) with searched area smaller than 5 deg2 3.6 4.8 2.3 2.7
20 deg2 17.4 15.6 7.8 12.3
100 deg2 50.1 46.5 29.3 41.3
200 deg2 66.5 58.6 43.4 56.0
500 deg2 87.0 75.4 67.6 76.1
1000 deg2 94.6 87.7 84.4 87.4

Fraction (in %) with dq lower than 1° 3.0 1.2 1.6 1.0
5° 15.4 10.5 12.1 10.1
15° 37.5 31.2 30.9 30.2
45° 62.7 69.1 62.9 61.4
60° 69.1 75.7 68.4 67.1
90° 76.4 79.9 75.4 76.1

Median searched area 99.2 deg2 121.3 deg2 252.8 deg2 151.0 deg2

median dq 25°. 1 26°. 2 29°. 9 30°. 3

Note. Statistical errors are in the order of a few percent.
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data streams obtained when they are shifted by half-integer
multiples of the period of the signal (for details see
Appendix A). Figure 4 shows distributions of the number of
disjoint regions obtained with the cWB and LIB pipelines on
the subset of signals identified as signals by BW.

To compare the BW performance with the performance of
LIB and cWB (Essick et al. 2015), we created the equivalents
of Figures 1–4 with LIB and cWB using the same subset of
events as we used in this study (see Figures 1–4). We have
found that all metrics show that these algorithms perform
similarly in localizing the source. Histograms of show that
values for BW are comparable to but systematically higher than
for cWB and LIB for all morphologies, except for BBH signals,
for which BW typically yields smaller searched areas than LIB.
There are also more WNB skymaps with large searched areas
( 100  deg2) for LIB than for BW. This is most likely due
to its ability to recover more of the signal by using multiple
wavelets as opposed to a single SG template.

3.2. Waveform Reconstruction

BayesWave uses SG wavelets to reconstruct a GW signal
from the detector output, which means that the recovered signal
is always given as a linear combination of SG wavelets, the
number of which is a parameter in the RJMCMC. To
characterize the quality of waveform reconstruction, we
introduce the overlap (, sometimes referred to as match),
which measures the similarity of an injected (hi) and a
recovered (h) waveform as

h h

h h h h
, 5i

i i

 =
( ∣ )

( ∣ )( ∣ )
( )

where . .( ∣ ) is a noise-weighted inner product, defined as
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where Sn is the one-sided power spectral density of the detector
noise, and x* denotes the complex conjugate of x.

From Equation (5) it is visible that ranges from −1 to 1,
with 1 = meaning a perfect match between hi and h, 0 =
meaning no match at all, and 1 = - meaning a perfect
anticorrelation between hi and h. With Equation (5), we can
calculate the overlap using data from only one detector. To
characterize the waveform reconstruction for the network of
GW detectors, we introduce the network overlap ( net ) by
changing the inner products in Equation (5) with the sum of the
inner products calculated for different detectors:
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where j denotes the jth detector in the network, and N is the
number of detectors used in the analysis (note that N=2 in
this study). We note that in our analysis we only considered
waveforms reconstructed from outputs of each detector (h j( )),
but not the astrophysical GW polarizations (h+, h× ), because
the two polarizations cannot be decomposed from detections
with two coaligned GW detectors, such as H1 and L1.

Figure 5 shows the cumulative distribution functions (CDFs)
of net . Shaded ranges represent the 2σ uncertainty calculated
using the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky

et al. 1956). The fraction of injected signals with 0.9net > is
97% for G, 96% for SG, 48% for BBH, and 47% for WNB
signals after the waveform reconstruction with BW. 95% of
injections have 0.92net > for G signals, 0.91net > for SG
signals, 0.75net > for BBH signals, and 0.68net > for
WNB signals. In Figure 5, the lower the curves reach at a given

net value, the better the reconstruction. This suggests that the
BW waveform reconstruction works most effectively for SG
and G signals, for which the curves are identical within the 2σ
statistical error. The BW waveform reconstruction is less
effective for WNB and BBH signals, and it shows similar
characteristics for these morphologies at high network overlaps
( 0.8 ), but the distribution for WNB signals has a longer tail at
low net values. BW performs better for SG and G signals
because at low S/Nnet BW tends to use fewer wavelets to avoid
overfitting the data. SG and G signals can be reconstructed
accurately even with only two to three SG wavelets, while this
is not possible for WNB and BBH signals. This also means that
the curves for SG and G signals in Figure 5 represent the
highgest BW capability of reconstructing a GW signal for a
given noise level, while the results for WNB and BBH signals
represent the BW performance on more generic (and thus, more
realistic) GW signals. We note that while net values are lower
for WNB and BBH signals, BW detects them with greater
confidence because its detection statistic depends more strongly
on the signal complexity than on S/Nnet (for details see
Littenberg et al. 2016). The inset plot in Figure 5 shows the
normalized histogram of the injected signals’ S/Nnet for the
four different signal morphologies. SG and G signals have an
overabundance at S/N 20net  relative to WNB and BBH
signals. This indicates that the previously described difference
in the distribution of net is not due to the different S/Nnet

distributions because BW performs better for SG and G signals,
even though S/Nnet values for SG and G signals are usually
lower than for WNB and BBH signals. We note that these
distributions strongly depend on the parameter distributions of
the injected signals as defined in Table 4 of Essick et al. (2015)
and on the corresponding detection efficiencies of the

Figure 5. Cumulative distribution function (CDF) of network overlaps ( net ).
Shadings represent the 2σ uncertainties calculated using the Dvoretzky-Kiefer–
Wolfowitz inequality (Dvoretzky et al. 1956). The lower the curves reach at a
given net value, the better the reconstruction. The inset shows the normalized
histogram of the network signal-to-noise ratio (S/Nnet) for signals with four
different morphologies. The curves for SG and G signals are identical within
the 2σ statistical errors, and they indicate significantly better reconstructions of
SG and G signals than of WNB and BBH signals.
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combination of cWB and BW pipelines for the different
parameter sets (see the S/Nnet histogram in the inset of
Figure 5).

We show net versus S/Nnet for SG, G, and WNB signals in
the left panel of Figure 6. The curves were estimated with a
Gaussian kernel smoother, which is a nonparametric regression
method. The shaded regions between dashed lines represent the
1σ uncertainty regions calculated with the bootstrap method, in
which we estimated the curve repeatedly for subsamples that
were randomly drawn from the full sample. We note that we
excluded the injections with S/N 100net > from the estimation
of these curves, and we only show the estimated curves up to
S/Nnet=70. All three morphologies show a clear trend of net
increasing with S/Nnet.

For BBH signals we calculated the net versus S/Nnet

curves in two separate bins of total mass (Mtot) of the BBH
system, calculated in the detector frame. The two bins were
defined with Mtot being M Mtot tot< ˆ and M Mtot tot> ˆ , where
M M44.49tot = ˆ is the median of Mtot values for all BBH
injections. The net versus S/Nnet curves for BBH signals are
shown in the right panel of Figure 6. Similarly to other
morphologies, BBH injections also show a clear trend of
increasing net with increasing S/Nnet. At low ( 35 ) S/Nnet

values, BW performed significantly better for signals with
higher Mtot, while differences in the curves are within the level
of statistical errors for higher S/Nnet values. Signals with high
Mtot are recovered with better accuracy because a large portion
of the signal power is in a compact region of time-frequency
space and therefore can be captured with a small number of
wavelets, while signals with low Mtot spend a comparatively
longer amount of time in the sensitive band of the detectors,
requiring more wavelets and a greater total signal strength to
achieve a similar fit. This difference vanishes at high S/Nnet

because BW uses more wavelets to reconstruct signals with
higher S/Nnet.

Figure 6 shows (similarly to Figure 5) that BW performs
very similarly on SG and G signals, and much less efficiently
on WNB and BBH signals. The reason is that BW needs to use
more wavelets to accurately reconstruct WNB and BBH

signals. We note that despite the weaker performance on
WNB and BBH signals, they also approach the reconstruction
accuracy for SG and G signals at higher S/Nnet values. When
we compare the two panels of Figure 6, it is visible that the
curve for BBH signals is similar to the curve for WNB signals,
with slightly lower overlap at low S/Nnet and slightly higher
overlap at high S/Nnet values.
Our results show that BW reliably reconstructs waveforms

with various morphologies. Although there are significant
differences between the efficiency of reconstructions of signals
with different morphologies, even for the worst case of WNB
signals (which do not even match BW’s assumption that the
signal is always elliptically polarized), most of them have
relatively high overlaps, and there is a clear trend of net
approaching 1 as S/Nnet increases.

3.3. Point Estimates of Waveform Central Moments

For a generic burst signal, we do not have any specific
astrophysical model whose parameters could be estimated. In
this case, we can still give estimates of the model-independent
parameters of the signal. Here we consider the central moments
of the waveform as such parameters.
The first central moments are central time (t0) and central

frequency ( f0), and the second central moments are duration
( tD ) and bandwidth ( fD ), defined as

t dt t t, 8a0 TDò r=
-¥

¥
( ) ( )

f df f f , 8b0
0

FDò r=
¥

( ) ( )

t dt t t t , 8c2
TD 0

2ò rD = -
-¥

¥
( ) ( )( ) ( )

f df f f f , 8d2

0
FD 0

2ò rD = -
¥

( ) ( )( ) ( )

respectively, where TDr and FDr are the effective normalized
distributions of signal energy, expressed in the time domain

Figure 6. Dependence of network overlaps ( net ) on network signal-to-noise ratios (S/Nnet) for SG, G, WNB, and BBH signals. Note that we excluded the injections
with S/N 100net > from the curve estimation. Shaded areas represent the 1σ uncertainty regions of the measured net values. The left panel shows the S/Nnet

dependence of net for SG, G, and WNB signals. All three morphologies show a clear trend of increasing overlap with increasing S/Nnet. The right panel shows the
S/Nnet dependence of network overlaps for BBH signals with a detector-frame total mass below and above the median total mass M M44.49tot = ˆ . BW performed
significantly better for signals with higher Mtot at S/N 35net  values.
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(TD) and in the frequency domain (FD):

t
h t

h
, 9aTD

2
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2

r =( ) ( ) ( )

f
h f

h

2
, 9bFD

2

rss
2

r =( ) (∣ ˜( )∣ ( )

where h(t) is the whitened (i.e., normalized with the
amplitude spectral density of the detector noise) waveform
for a given detector and h f˜( ) is the Fourier transform

of h(t). These distributions satisfy t dt 1TDò r =
-¥

¥
( ) ,

and f df 1
0 FDò r =
¥

( ) .
Estimates of higher-order moments could also be given with

BW, but we excluded them from our analysis because they are
more strongly affected by statistical errors than estimates of
the first-order moments (for a detailed discussion of this, see
the end of this section).

BayesWave reconstructs the waveform and calculates the
waveform moments for each sample in the Markov chain. We
calculated the median value to give a point estimate of the

waveform moments. To quantify the accuracy of the point
estimate of waveform moment x, we define the absolute error
of the estimation, ex, as

e x x , 10x
e r= -∣ ∣ ( )( ) ( )

where x e( ) is the estimated and x r( ) is the real value of x. We
also introduce the relative error of an estimate, xh , as

e

x
. 11x

x
r

h = ( )( )

We show CDFs of e tt0 D , e ff0 D , thD , and fhD in Figure 7,
where shadings represent the 2σ uncertainties calculated using
the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al.
1956). All moments were calculated for H1 detector data, but
the results are also very similar for L1. We divided the absolute
errors of the first-moment estimates with the real values of the
corresponding second moments because we expect that the
statistical error of the first-moment estimate scales with the real
values of the second moments.
We show CDFs of e tt0 D for different morphologies in the

top left panel of Figure 7. These show that the most accurate t0
estimates with BW are obtained for G signals, while estimates

Figure 7. Cumulative distribution functions (CDF) of waveform central moment errors: absolute errors of central time estimates divided by signal durations (e tt0 D ,
upper left), relative errors of duration estimates ( thD , upper right), absolute errors of central frequency estimates divided by signal bandwidths ( ff0

h D , lower left), and
relative errors of bandwidth estimates ( fhD , lower right). Shadings represent the 2σ uncertainties calculated using the Dvoretzky-Kiefer-Wolfowitz inequality
(Dvoretzky et al. 1956). Colors indicate CDFs for signals with sine-Gaussian (SG), Gaussian (G), white-noise burst (WNB), and binary black hole (BBH)
morphologies. We list the values of the 95th percentiles and medians in Table 3.
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for BBH signals are the least accurate. The relatively high et0

values are obtained because BW cannot reconstruct the low-
amplitude parts of the signal that are overwhelmed by noise,
which can cause a systematic error in the estimation of t0. For
example, BW is almost insensitive to the inspiral parts of BBH
signals, which make up the bulk of BBH signal durations, and
this bias increases the lower the total mass of the systems is.
This effect is less significant for the other three morphologies,
which explains why the estimate of t0 is less accurate for BBH
signals (with a median et0 value of t0.16D ). The t0 values we
obtain for H1 and for L1 are strongly correlated, which means
that the error on the estimation of the difference of arrival times
between H1 and L1 (determining the thickness of the sky
localization triangulation ring) is typically smaller than et0.

We show CDFs of thD in the top right panel of Figure 7.
These curves significantly differ for different waveform
morphologies. Regarding the median thD , the tD estimate is
the most accurate for SG signals (with a median value of 0.06)
and the least accurate for BBH signals (with a median value of
0.57). We note, however, that median values contain no
information about the lengths of the tails of the thD
distributions. Of the four morphologies, the thD distribution
for the SG signals has the longest tail (see top right panel
of Figure 7). For 1t hD , CDF values for BBH signals
are significantly lower than for the other three morphologies,
while for 1t hD , they are higher. The reason is the steep part
of the BBH curve around 1th =D , which corresponds to the
systematic underestimation of the duration of low-mass BBH
signals (which is due to the effect explained in the previous
paragraph).

We show CDFs of e ff0 D in the bottom left panel of
Figure 7. Curves for different morphologies are identical within
the error bars, in contrast with CDFs of e tt0 D , where the
curves are similar but not identical. This indicates that these
errors are purely due to the statistical errors of the central
frequency estimation, determined by the non-zero value of fD .
We note that all e f0 values are lower than fD , and the median of
e f0 is smaller than 0.1 for all morphologies (see Table 3).

We show CDFs of fhD in the bottom right panel of Figure 7.
The accuracies of the fD estimate are similar for different
morphologies, but not as much as for ff0

h D . The 95th
percentiles are between 0.2 and 0.4 for the different

morphologies. We note that relative errors of bandwidth
estimates tend to be higher than the relative error of central
frequency estimates. The reason is that estimates of second-
order moments inherit errors from estimates of lower order
moments (see Equations 8(c) and 8(d)) and thus have higher
statistical errors. We expect that estimates of third and higher-
order moments would have even larger errors, and thus we
restrict our attention to examining only estimates of the first
two moments. The medians and 95th percentiles of the errors
for each moment and for each morphology are shown in
Table 3.
As a summary, the results presented in Figure 7 show that

the error distributions for f0 and fD are very similar for
different morphologies, while the error distributions for t0 and

tD show significant differences between different morpholo-
gies. This also means that while the errors of the f0 and fD
estimates are purely statistical, the errors of t0 and tD estimates
also include systematics. The latter occurs because BW cannot
reconstruct low-amplitude parts of a signal that is overwhelmed
by noise, which may result in a systematic error in the
estimation of t0 and tD . It is clear that the accuracy of the
moment estimation is affected by how accurately the signals
are reconstructed. However, we see identical CDFs of e ff0 D
for different morphologies, while they have different net
distributions, which suggests that net is not a good indicator of
the BW moment estimation accuracy.

4. Conclusion

We presented a comprehensive multi-aspect study of the
performance of BW, a Bayesian GW burst PE pipeline used by
the LIGO-Virgo Collaboration for reconstructing GW burst
signals and their parameters. We injected a large number of
simulated signals with four different morphologies (SGs,
Gaussians, WNBs, and BBH signals) into simulated O1 aLIGO
noise to test the BW performance in three different aspects of PE:
sky localization, waveform reconstruction, and estimation of
waveform central moments (for details on the methods we used,
see Section 2).
BayesWave localizes sources with a level of accuracy

comparable for all four morphologies, with the median
separation of actual and estimated sky locations ranging from
25°.1 to 30°.3 (see Table 2), and a median searched area (, see
Equation (4)) ranging from 99.2 deg2 to 252.8 deg2 (see
Section 3.1). This is reasonable accuracy for a two-detector
network, and is comparable to accuracies of other localization
pipelines (cWB and LIB) studied previously (Essick
et al. 2015). Histograms of  (see Figure 2) show that 
values for BW are comparable to but systematically larger than
for cWB and LIB for all morphologies. The exceptions are
BBH signals, for which the BW  values are systematically
lower. We note that the runtime of cWB and LIB is much
shorter than of BW.
BayesWave reconstructs waveforms as a linear combination of

SG wavelets. To measure the goodness of reconstruction, we
used the network overlap ( net , see Equation (7)), which
quantifies the similarity between the injected and the recon-
structed signals. We have found that BW reconstructs signals
with 0.9net > for 98% of G, 96% of SG, 45% of WNB, and
47% of BBH signals (see Section 3.2). We have also found that
(see Figure 6) net increases rapidly with increasing S/Nnet,
reaching 0.95net = at S/N 14net » for SG and G, at
S/N 50net » for WNB, and at S/N 35net » for BBH signals.

Table 3
Medians (50th Percentiles) and 95th Percentiles of Waveform Central Moment

Errors for the SG, G, WNB, and BBH Signal Morphologies

P Signal Morphology

SG G WNB BBH

e tt0 D 50th 0.11 0.03 0.08 0.16

95th 0.57 0.21 0.39 0.31

thD 50th 0.06 0.11 0.21 0.57

95th 2.30 6.59 5.60 1.07

e ff0 D 50th 0.09 0.09 0.09 0.07

95th 0.29 0.30 0.32 0.31

fhD 50th 0.06 0.07 0.07 0.06

95th 0.23 0.21 0.39 0.30

Note. P denotes the percentile rank of values given in the corresponding table
columns.
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These results suggest that we can expect very good reconstruction
( 0.95net > ) for almost any signal with high ( 50 ) S/Nnet, and
reasonably good reconstruction ( 0.85net > ) for almost any
signal with moderate ( 20 ) S/Nnet.

We also examined how accurately BW can estimate the
central moments of a GW waveform (see Section 3.3). These
are model-independent parameters of a signal, which means
that by examining the estimation of them, we can characterize
PE without assuming any astrophysical model for the source.
We have found that errors of f0 and fD estimations are purely
statistical, while errors of t0 and tD estimations also include
some systematics. We have also found that net is not a good
indicator of the BW moment estimation accuracy. The median
value of e ff0 D is 0.09 for SG, G, and WNB signals, and 0.07
for BBH signals (see Table 3). There is no standard procedure
of how the estimated moments of GW bursts can be used to test
astrophysical models, but future studies can use our results to
test the feasibility of particular methods using signal moments.

This paper fits into a series of studies examining PE for GW
bursts (see, e.g., Klimenko et al. 2011; Essick et al. 2015). These
studies can be used in comparisons with improved performances
of future PE pipelines and to test the feasibility of possible
astrophysical applications of future GW burst detections.
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Appendix A
Resolving the BW O1 Version Issue with High-Q Signals

During O1, BW was prone to classifying simulated short-
duration high-frequency signals that underwent many wave
cycles (i.e., high-Q signals) while in the measurement band of
the detector as glitches. In principle, there is no reason for the
Bayesian evidence used to rank a hypothesis under considera-
tion by BW to have strong frequency dependence.
Upon examination of the misclassified injections, it was

revealed that the high-f, high-Q signals exhibit multimodal
likelihood support in the ( t f, , ,0 0a d ) parameter subspace. For
these signals, the Markov chain Monte Carlo (MCMC)
sampler, which serves as the central engine to the BW
algorithm, was not generically sampling between the different
modes and was thus prone to missing significant portions of the
coherent signal and preferring the incoherent glitch model
(which does not suffer the correlations between time-frequency
parameters and sky location).
The cause of the multimodal likelihood function is clear. For

a sinusoidal signal (Q = ¥) the waveform is perfectly
degenerate when time-shifted by an integer number of wave-
periods (T). For high-Q signals, a number of integer periods (or
half-integer periods with a π radians phase shift), time shifts
produce similarly good fits to the data. For coherent signals,
these (nearly) degenerate time shifts are also present in the time
delay between detectors, which, for BW, is encoded in the sky
location.
To overcome the susceptibility of BW to missing modes of

the likelihood when analyzing high-Q signals, we added a
proposal distribution to the MCMC that explicitly suggests
half-integer-period time shifts, along with half-integer-cycle
phase shifts, for the wavelet parameters. Furthermore, exten-
sive development (beyond the scope of this paper) to improve
the overall capabilities of the BW MCMC to sample the
complex sky-location posteriors encountered by two-detector
GW networks has been completed.
Figure 8 contains two scatter plots from the BWMCMC using

the dedicated proposal distributions. The multimodal nature of
the posterior is clearly displayed, as is the efficiency with which

Figure 8. Scatter plot of MCMC samples for signal model parameters of a high-Q, high-f sine-Gaussian injection. The left panel shows the time-frequency plane with
points colored by the wavelet phase parameter. Multiple modes and their phase-dependence are evident. The right panel shows the same chain samples, but now
projected on the sky-location plane of the parameter space and colored by the time parameter. Here again it is plainly visible how different half-integer-period time
shifts correspond to different “rings” on the sky, making this a challenging distribution to sample without well-tuned proposal distributions.
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the MCMC sampler is able to move between local maxima in the
likelihood. This example came from an f 512 Hz~ ,Q 40~ SG
injection. Using the MCMC as it was during O1, we found a
preference for the incoherent “glitch” model, with a Bayes factor
between that and the coherent “signal” model of ∼e60 in favor of
the glitch model. Using the updated sampler and analyzing the
same (simulated) data, we find a Bayes factor of ∼e18 in favor of
the signal model.

Despite this upgrade to the BW MCMC engine, we elected
to present results as the algorithm performed during O1 to
facilitate a direct comparison with the snapshot of other burst
PE techniques during the first observing run. Future studies
showing how the upgraded sampler performs on similar
injections are underway.

Appendix B
Example Skymaps

Figure 9 shows an example skymap for an injected SG signal.
The injected location is marked with a star, and the corresponding
triangulation ring for L1 and H1 detectors is denoted with a gray
line. H–L and L–H marks the direction between the two detectors,
H+ and L+ the directions above the detectors, and H- and L- the
directions below the detectors. The skymap in Figure 9 is a typical
map. It is consistent with the triangulation ring of the two-detector
network and the constraint of the network antenna pattern, which
leads to a relatively small elongated area on the sky with the
maximum close to the injected location. Figure 8 shows 20
example skymaps (five for each morphology) in the online journal.
Skymaps for all the signals used in this study are available in the
Burst First2Years sky localization Open Data release.7
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Figure 9. Example skymap showing the reconstructed sky location for an injected SG signal. The injected location is marked with a star, and the corresponding
triangulation ring for L1 and H1 detectors is denoted with a gray line. H–L and L–H marks the direction between the two detectors, H+ and L+ the directions above
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(The complete figure set (20 images) is available.)
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